登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>电化学生物传感器在高致病性病毒检测中的应用

电化学生物传感器在高致病性病毒检测中的应用

187    2020-10-27

¥0.50

全文售价

作者:齐佳伟1,2, 许丽2, 闻艳丽2, 刘刚2, 饶品华1

作者单位:1. 上海工程技术大学化学与化工学院,上海 201620;
2. 上海市计量测试技术研究院化学与电离辐射计量技术研究所生物计量实验室,上海 201203


关键词:病毒检测;生物传感器;电化学生物传感器


摘要:

电化学生物传感器具有高效、灵敏、低成本等优势,已在多种高致病性病毒检测中得到应用。该文介绍电化学生物传感器的工作原理和分类,综述近年来电化学生物传感技术在肝炎病毒、流感病毒、人乳头瘤病毒、人类免疫缺陷病毒、寨卡病毒、新型冠状病毒等多种高致病性病毒检测中的研究进展,最后讨论该技术在病毒检测领域面临的挑战和未来发展方向。


Application of electrochemical biosensors for highly pathogenic virus detection
QI Jiawei1,2, XU Li2, WEN Yanli2, LIU Gang2, RAO Pinhua1
1. College of Chemistry and Chemical Engineering, Shanghai University of Engineering and Technology, Shanghai 201620, China;
2. Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
Abstract: With the advantage of high efficiency, excellent sensitivity and low cost, electrochemical biosensor has been applied in the detection of a variety of highly pathogenic virus. In this review, the principle and classification of electrochemical biosensor were introduced. Besides, the recent developments in electrochemical biosensors for detecting higly pathogenic viruses such as hepatitis virus, influenza virus, human papillomavirus, human immunodeficiency virus, Zika virus and 2019-nCoV were reviewed. Finally, the challenges and future development trend of electrochemical biosensors in virus detection were discussed.
Keywords: virus detection;biosensor;electrochemical biosensor
2020, 46(10):59-71  收稿日期: 2020-08-31;收到修改稿日期: 2020-09-25
基金项目: 国家质量基础的共性技术研究与应用专项(2018YFF0212803)
作者简介: 齐佳伟(1996-),男,陕西咸阳市人,硕士研究生,专业方向为电分析化学与生物传感技术
参考文献
[1] LUKASHEV A N, ZAMYATNIN A A. Viral vectors for gene therapy: current state and clinical perspectives[J]. Biochemistry, 2016, 81(7): 700-708
[2] BAO P D, BAO L, HUANG T Q, et al. Geometry of GLP on silver surface by surface-enhanced Raman spectroscopy[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2000: 210-214
[3] HENKEL J H, ABERLE S W, AND M K, et al. Improved detection of respiratory syncytial virus in nasal aspirates by seminested RT-PCR[J]. Journal of Medical Virology, 1997
[4] YANIK A A, HUANG M, KAMOHARA O, et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media[J]. Nano Lett, 2010, 10(12): 4962-9
[5] JOHNSON B N, MUTHARASAN R. Biosensor-based microRNA detection: techniques, design, performance, and challenges[J]. Analyst, 2014, 139(7): 1576-1588
[6] JOLLY P, FORMISANO N, ESTRELA P. DNA aptamer-based detection of prostate cancer[J]. Chemical Papers, 2015, 69(1): 77-89
[7] TARUN K S, RAJESH R, RANDEEP R, et al. Moving forward in plant food safety and security through NanoBioSensors: adopt or adapt biomedical technologies?[J]. Proteomics, 2015, 15(10): 1680-1692
[8] DORST B V, MEHTA J, BEKAERT K, et al. Recent advances in recognition elements of food and environmental biosensors: a review[J]. Biosensors & Bioelectronics, 2011, 26(4): 1178-1194
[9] FREW J E, HILL H A. Electrochemical biosensors[J]. Analytical Chemistry, 2010, 39(5): 1747-1763
[10] GOODE J A, RUSHWORTH J V H, MILLNER P A. Biosensor regeneration: a review of common techniques and outcomes[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2015, 31(23): 6267-76
[11] AHMAD R, MAHMOUDI T, AHN M S, et al. Recent advances in nanowires-based field-effect transistors for biological sensor applications[J]. Biosensors & Bioelectronics, 2018, 100: 312-325
[12] KURTINAITIENE B, AMBROZAITE D, LAURINAVICIUS V, et al. Amperometric immunosensor for diagnosis of BLV infection[J]. Biosensors & Bioelectronics, 2008, 23(10): 1547-1554
[13] ZHANG X F, XU H M, HAN L, et al. A thioflavin T-induced G-quadruplex fluorescent biosensor for target DNA detection[J]. Analytical Sciences, 2018, 34(2): 149-153
[14] GOSSNER C, SEVERI E. Three simultaneous, food-borne, multi-country outbreaks of hepatitis A virus infection reported in EPIS-FWD in 2013: what does it mean for the European Union?[J]. Eurosurveillance, 2014, 19(43): 20941
[15] SÁNCHEZ G, BOSCH A, PINTÓ R M. Hepatitis A virus detection in food: current and future prospects[J]. Letters in Applied Microbiology, 2010, 45(1): 1-5
[16] ANTONIO A L, MARIA J L F, SALVATORE P, et al. Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors[J]. ACS Sensors, 2018, 3(9): 1690-1697
[17] PAN X B, WEI L, HAN J C, et al. Artificial recombinant cell-penetrating peptides interfere with envelopment of hepatitis B virus nucleocapsid and viral production[J]. Antiviral Research, 2011, 89(1): 109-114
[18] CHEN J, CHEN Q, GAO C, et al. A SiO2 NP–DNA/silver nanocluster sandwich structure-enhanced fluorescence polarization biosensor for amplified detection of hepatitis B virus DNA[J]. J. Mater. Chem. B, 2015, 3(6): 964-967
[19] ZOU N L , ZANG Y C , MAO H J , et al. A visual high-sensitivity microarray for detection of hepatitis B virus DNA and its single nucleotide polymorphisms[J]. Chinese Journal of Analytical Chemistry, 2012, 40(4): 569-573
[20] LIAW Y F, SOLLANO J D. Factors influencing liver disease progression in chronic hepatitis B[J]. Liver International, 2006, 26(S2): 23-29
[21] CHEN C C, LAI Z L, WANG G J, et al. Polymerase chain reaction-free detection of hepatitis B virus DNA using a nanostructured impedance biosensor[J]. Biosensors & Bioelectronics, 2016, 77: 603-608
[22] ALIZADEH N, HALLAJ R, SALIMI A. A highly sensitive electrochemical immunosensor for hepatitis B virus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification[J]. Biosensors & Bioelectronics, 2017, 94: 184-192
[23] ANDRES W, MARTINEZ, SCOTT T, et al. Patterned paper as a platform for inexpensive, low-volume, portable bioassays[J]. Angewandte Chemie International Edition, 2007, 46(8): 1318-1320
[24] DONG T, WANG G A, LI F. Shaping up field-deployable nucleic acid testing using microfluidic paper-based analytical devices[J]. Analytical and Bioanalytical Chemistry, 2019
[25] NOIPHUNG J, LAIWATTANAPAISAL W. Multifunctional paper-based analytical device for in situ cultivation and screening of escherichia coli infections[J]. Scientific Reports, 2019, 9: 1555
[26] SRISOMWAT C, TEENGAM P, CHUAYPEN N, et al. Pop-up paper electrochemical device for label-free hepatitis B virus DNA detection[J]. Sensors and Actuators B Chemical, 2020, 316: 128077
[27] MANZANO M, VIEZZI S, MAZERAT S, et al. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus[J]. Biosensors & Bioelectronics, 2017: 89
[28] ABRAHAM M K, PERKINS J, VILKE G M, et al. Influenza in the emergency department: vaccination, diagnosis, and treatment: clinical practice paper approved by American academy of emergency medicine clinical guidelines committee[J]. Journal of Emergency Medicine, 2016: 536-542
[29] PEAPER D R, LANDRY M L. Rapid diagnosis of influenza: state of the art[J]. Clinics in Laboratory Medicine, 2014, 34(2): 365-385
[30] JAROCKA U, SAWICKA R A, GÓRA-SOCHACKA A, et al. Electrochemical immunosensor for detection of antibodies against influenza A virus H5N1 in hen serum[J]. Biosensors & Bioelectronics, 2014, 55: 301-306
[31] LEE T, PARK S Y, JANG H, et al. Fabrication of electrochemical biosensor consisted of multi-functional DNA structure/porous au nanoparticle for avian influenza virus (H5N1) in chicken serum[J]. Materials ence and Engineering C, 2019, 99: 511-519
[32] MATSUBARA T, UJIE M, YAMAMOTO T, et al. Avian influenza virus detection by optimized peptide termination on a boron-doped diamond electrode[J]. ACS Sens., 2020, 5(2): 431-439
[33] KARIMIZEFREH A, MAHYARI F A, VAEZJALALI M, et al. Impedimetic biosensor for the DNA of the human papilloma virus based on the use of gold nanosheets[J]. Microchimica Acta, 2017, 184(6): 1729-1737
[34] XIAO T, HUANG J, WANG D, et al. Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications[J]. Talanta, 2019, 206: 120210
[35] SHARIATI M, GHORBANI M, SASANPOUR P, et al. An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment[J]. Analytica Chimica Acta, 2018, 1048: 31-41
[36] WANG S, LI L, JIN H, et al. Electrochemical detection of hepatitis B and papilloma virus DNAs using SWCNT array coated with gold nanoparticles[J]. Biosensors & Bioelectronics, 2013, 41: 205-210
[37] HUANG H, BAI W, DONG C, et al. An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection[J]. Biosensors & Bioelectronics, 2015, 68: 442-446
[38] EGGER M, HIRSCHEL B, FRANCIOLI P, et al. Impact of new antiretroviral combination therapies in HIV infected patients in Switzerland: prospective multicentre study[J]. Bmj, 1997, 315(7117): 1194-1199
[39] LEE J H, OH B K, CHOI J W. Electrochemical sensor based on direct electron transfer of HIV-1 virus at Au nanoparticle modified ITO electrode[J]. Biosensors & Bioelectronics, 2013, 49: 531-535
[40] GUO Y, CHEN J H, GUONAN C. A label-free electrochemical biosensor for detection of HIV related gene based on interaction between DNA and protein[J]. Sensors & Actuators B Chemical, 2013, 184: 113-117
[41] GONG Q, YANG H, DONG Y, et al. A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film[J]. Biosensors & Bioelectronics, 2015, 7(6): 2554-2562
[42] FAUCI A S, MORENS D M. Zika virus in the Americas--yet another arbovirus threat[J]. N Engl J Med, 2016: 601-604
[43] HAUG C J, KIENY M P, MURGUE B. The zika challenge[J]. New England Journal of Medicine, 2016, 374(19): 1801
[44] HENRIQUE A M F, VALTENCIR Z. Label-free electrochemical DNA biosensor for Zika virus identification[J]. Biosensors & Bioelectronics, 2019, 131: 149-155
[45] LYNCH C A, FOGUEL M V, REED A J, et al. Selective determination of isothermally amplified Zika virus RNA using a universal DNA-hairpin probe in less than 1 hour[J]. Analytical Chemistry, 2019, 91(21): 13458-13464
[46] CHU D K W, YANG P, CHENG S M S, et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia[J]. Clinical Chemistry, 2020(4): 4
[47] DOREMALEN N V, BUSHMAKER T, MORRIS D H, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1[J]. New England Journal of Medicine, 2020, 382(16)
[48] HOEHL S, BERGER A, KORTENBUSCH M, et al. Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China[J]. New England Journal of Medicine, 2020, 382(13): 1278-1280
[49] SEO G, LEE G, KIM M J, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor[J]. ACS Nano, 2020, 14(4): 5135-5142
[50] LEE J, MORITA M, TAKEMURA K, et al. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform[J]. Biosensors and Bioelectronics, 2018, 102: 425-431
[51] MOHGA, KHATER, ALFREDO, et al. In situ plant virus nucleic acid isothermal amplification detection on gold nanoparticle-modified electrodes[J]. Analytical Chemistry, 2019, 91(7): 4790-4796
[52] HODA I, SIAMAK F. A novel electrochemical DNA biosensor for Ebola virus detection[J]. Analytical Biochemistry, 2018, 557: 151-155
[53] LIM J M, KIM J H, RYU M Y, et al. An electrochemical peptide sensor for detection of dengue fever biomarker NS1[J]. Analytica Chimica Acta, 2018, 1026: 109-116
[54] BAECKER M, KOCH C, EIBENZ S, et al. Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors[J]. Sensors & Actuators B Chemical, 2017, 238(.): 716-722
[55] BIRNBAUMER G M, LIEBERZEIT P A, RICHTER L, et al. Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors[J]. Lab on a Chip, 2009, 9(24): 3549

凯撒皇宫游戏忘记密码 亚美逢7优惠 滨海游戏佣金 澳门银河网投 申博真人番摊娱乐
凌龙棋牌官网 怎么找人注册会员 足球比分直播 众鑫娱乐手机客户端 老葡京信任平台
优游立即注册 百乐宫娱乐场注册 申博娱乐138 外围足球软件哪个好 越南黄金赌场
澳门新金沙网站游戏 亚洲城游戏最高返水 申博娱乐城怎么开户es2 58彩牛可靠吗 博亿赌博网站